2

I know that if $f$ is an injection then $f(\bigcap_{\alpha\in{I}}A_\alpha)=\bigcap_{\alpha\in{I}}f(A_\alpha)$ but, the inverse is true?. I mean If $f(\bigcap_{\alpha\in{I}}A_\alpha)=\bigcap_{\alpha\in{I}}f(A_\alpha)$ then $f$ is an injection

I would appreciate if you explain your answer please.

Thanks for your time.

Julien
  • 44,791

1 Answers1

4

Suppose $f(x_1)=f(x_2)$ for some $x_1\neq x_2$. Then $\{x_1\}\cap\{x_2\}=\emptyset$ so $f(\{x_1\}\cap\{x_2\})=\emptyset$. But $\{f(x_1)\}\cap\{f(x_2)\}\neq\emptyset$.

Hui Yu
  • 15,029