suppose that $u$ is differentiable function and verifies: $$\lim_{x\to +\infty}u(x)=1$$ do we have $\lim_{x\to +\infty}u'(x)=0$?
My idea: we inserve limits
$$\lim_{x\to +\infty}u'(x)=lim_{x\to +\infty}\lim_{h\to 0}\frac{u(x+h)-u(x)}{h}=\lim_{h\to 0}lim_{x\to +\infty}\frac{u(x+h)-u(x)}{h}=\lim_{h\to 0}\frac{1-1}{h}=0$$