The problem:
There be the points $P_0(0,0,0)$, $P_1(1,1,1)$, $P_2(2,-1,2)$ and $P_3(3,0,1)$. Calculate the volume of the pyramid.
Now I assumed the base of the pyramid is a triangle, with points $P_1$, $P_2$ and $P_3$.
So I know $\underline u:=\overrightarrow{P_1P_2} = <1, -2, 1>$ and $\underline v:=\overrightarrow{P_1P_3}=<2,-1,0>$.
I calculated the angle between $\underline u$ and $\underline v$:
$$\cos\theta:=\frac{\underline{u}\cdot\underline{v}}{||\underline{u}||\,||\underline{v}||}=\frac{4}{\sqrt{30}}\Longrightarrow \theta=43.0887^\circ$$ $$S_\Delta=\frac{||\underline{u}||\,||\underline{v}||\sin\theta}{2}=1.87$$
and I thought the pyramid's height to be $\,2\,$ , so the volume is $\,\,\displaystyle{V=\frac{S_\Delta\cdot 2}{3}=1.246}$
I believe I'm somewhat wrong with this.
Help will be much appreciated!