I know that if $E=\biguplus_{n=1}^{\infty}E_n$ then $\mu(E)=\sum_{n=1}^{\infty}\mu(E)$ else $\mu(E)\leq\sum_{n=1}^{\infty}\mu(E)$
in the case of $E_n=[n,\infty]$ and $E=\cap_{n=1}^{\infty}E_n$ we can say about $\mu(E)?$ I know that $E=\emptyset$, can we just right $\mu(E)=\mu(\emptyset)?$ and then by definition $\mu(\emptyset)=0$ or there is an analogue for sigma additivity for intersection ?