Solve $\int \dfrac{x^4+x^8}{(1-x^4)^{\frac{7}{2}}} \, dx$
My attempt is as follows:-
$$1-x^4=t$$ $$-4x^3=\dfrac{dt}{dx}$$ $$x^3dx=\dfrac{-dt}{4}$$
$$\frac{-1}{4}\cdot\int\dfrac{(1-t)^{\frac{1}{4}}(1-t)}{t^{\frac{7}{2}}}dt$$ $$\frac{-1}{4}\cdot\int\dfrac{(1-t)^\frac{5}{4}}{t^{\frac{7}{2}}}dt$$ $$\frac{-1}{4}\cdot\int\left(\dfrac{1}{t} -1\right)^{\frac{5}{4}}\cdot\left(\dfrac{1}{t} \right)^{\frac{9}{4}}dt$$
$$\frac{-1}{4}\cdot\int\left(\dfrac{1}{t} -1\right)^{\frac{5}{4}}\cdot\left(\dfrac{1}{t} \right)^2\cdot\left(\dfrac{1}{t}\right)^{\frac{1}{4}} \, dt$$
$$\frac{1}{t}-1=y$$ $$\frac{-1}{t^2}=\frac{dy}{dt}$$ $$\frac{dt}{t^2}=-dy$$
$$\frac{1}{4}\int y^\frac{5}{4}(y+1)^{\frac{1}{4}} \, dy$$ $$\frac{1}{4}\int y(y^2+y)^{\frac{1}{4}} \, dy$$ $$\frac{1}{8}\int (2y+1-1)(y^2+y)^{\frac{1}{4}} \, dy$$ $$\frac{1}{8}\left(\int (2y+1)(y^2+y)^{\frac{1}{4}} \, dy-\int (y^2+y)^{\frac{1}{4}} \, dy\right)$$ $$\frac{1}{8}\left(\int (2y+1)(y^2+y)^{\frac{1}{4}} \, dy - \int\left(\left(y+\dfrac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)^\frac{1}{4} \right)$$
How to proceed from here or feel free to suggest some shorter and clean way.
Another way recommended
$$I=I_1+I_2$$ $$I=\int \dfrac{x^4}{(1-x^4)^{\frac{7}{2}}}dx+\int \dfrac{x^8}{(1-x^4)^{\frac{7}{2}}}dx$$
First let's solve $I_2$
$$I_2=\int x^5\left(\dfrac{x^3}{(1-x^4)^{\frac{7}{2}}}\right)dx$$
Integrating by parts:-
$$I_2=\dfrac{1}{10}\cdot\dfrac{x^5}{(1-x^4)^{\frac{5}{2}}}-\dfrac{1}{10}\cdot\int \dfrac{5x^4}{(1-x^4)^{\frac{5}{2}}}dx$$
$$I_2=\dfrac{1}{10}\cdot\dfrac{x^5}{(1-x^4)^{\frac{5}{2}}}-\dfrac{1}{10}\cdot\int \dfrac{5x^4(1-x^4)}{(1-x^4)^{\frac{7}{2}}}dx$$
$$I_2=\dfrac{1}{10}\cdot\dfrac{x^5}{(1-x^4)^{\frac{5}{2}}}-\dfrac{1}{10}\cdot\int \dfrac{5x^4(1-x^4)}{(1-x^4)^{\frac{7}{2}}}dx$$
$$I_2=\dfrac{1}{10}\cdot\dfrac{x^5}{(1-x^4)^{\frac{5}{2}}}-\dfrac{1}{2}\cdot\int \dfrac{x^4}{(1-x^4)^{\frac{7}{2}}}dx+\dfrac{I_2}{2}$$
$$\dfrac{I_2}{2}+\dfrac{I_1}{2}=\dfrac{1}{10}\cdot\dfrac{x^5}{(1-x^4)^{\frac{5}{2}}}$$
$$I_1+I_2=\dfrac{1}{5}\cdot\dfrac{x^5}{(1-x^4)^{\frac{5}{2}}}$$ $$I=\dfrac{1}{5}\cdot\dfrac{x^5}{(1-x^4)^{\frac{5}{2}}}$$