5

Solve $\int \dfrac{x^4+x^8}{(1-x^4)^{\frac{7}{2}}} \, dx$

My attempt is as follows:-

$$1-x^4=t$$ $$-4x^3=\dfrac{dt}{dx}$$ $$x^3dx=\dfrac{-dt}{4}$$

$$\frac{-1}{4}\cdot\int\dfrac{(1-t)^{\frac{1}{4}}(1-t)}{t^{\frac{7}{2}}}dt$$ $$\frac{-1}{4}\cdot\int\dfrac{(1-t)^\frac{5}{4}}{t^{\frac{7}{2}}}dt$$ $$\frac{-1}{4}\cdot\int\left(\dfrac{1}{t} -1\right)^{\frac{5}{4}}\cdot\left(\dfrac{1}{t} \right)^{\frac{9}{4}}dt$$

$$\frac{-1}{4}\cdot\int\left(\dfrac{1}{t} -1\right)^{\frac{5}{4}}\cdot\left(\dfrac{1}{t} \right)^2\cdot\left(\dfrac{1}{t}\right)^{\frac{1}{4}} \, dt$$

$$\frac{1}{t}-1=y$$ $$\frac{-1}{t^2}=\frac{dy}{dt}$$ $$\frac{dt}{t^2}=-dy$$

$$\frac{1}{4}\int y^\frac{5}{4}(y+1)^{\frac{1}{4}} \, dy$$ $$\frac{1}{4}\int y(y^2+y)^{\frac{1}{4}} \, dy$$ $$\frac{1}{8}\int (2y+1-1)(y^2+y)^{\frac{1}{4}} \, dy$$ $$\frac{1}{8}\left(\int (2y+1)(y^2+y)^{\frac{1}{4}} \, dy-\int (y^2+y)^{\frac{1}{4}} \, dy\right)$$ $$\frac{1}{8}\left(\int (2y+1)(y^2+y)^{\frac{1}{4}} \, dy - \int\left(\left(y+\dfrac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)^\frac{1}{4} \right)$$

How to proceed from here or feel free to suggest some shorter and clean way.

Another way recommended

$$I=I_1+I_2$$ $$I=\int \dfrac{x^4}{(1-x^4)^{\frac{7}{2}}}dx+\int \dfrac{x^8}{(1-x^4)^{\frac{7}{2}}}dx$$

First let's solve $I_2$

$$I_2=\int x^5\left(\dfrac{x^3}{(1-x^4)^{\frac{7}{2}}}\right)dx$$

Integrating by parts:-

$$I_2=\dfrac{1}{10}\cdot\dfrac{x^5}{(1-x^4)^{\frac{5}{2}}}-\dfrac{1}{10}\cdot\int \dfrac{5x^4}{(1-x^4)^{\frac{5}{2}}}dx$$

$$I_2=\dfrac{1}{10}\cdot\dfrac{x^5}{(1-x^4)^{\frac{5}{2}}}-\dfrac{1}{10}\cdot\int \dfrac{5x^4(1-x^4)}{(1-x^4)^{\frac{7}{2}}}dx$$

$$I_2=\dfrac{1}{10}\cdot\dfrac{x^5}{(1-x^4)^{\frac{5}{2}}}-\dfrac{1}{10}\cdot\int \dfrac{5x^4(1-x^4)}{(1-x^4)^{\frac{7}{2}}}dx$$

$$I_2=\dfrac{1}{10}\cdot\dfrac{x^5}{(1-x^4)^{\frac{5}{2}}}-\dfrac{1}{2}\cdot\int \dfrac{x^4}{(1-x^4)^{\frac{7}{2}}}dx+\dfrac{I_2}{2}$$

$$\dfrac{I_2}{2}+\dfrac{I_1}{2}=\dfrac{1}{10}\cdot\dfrac{x^5}{(1-x^4)^{\frac{5}{2}}}$$

$$I_1+I_2=\dfrac{1}{5}\cdot\dfrac{x^5}{(1-x^4)^{\frac{5}{2}}}$$ $$I=\dfrac{1}{5}\cdot\dfrac{x^5}{(1-x^4)^{\frac{5}{2}}}$$

user3290550
  • 3,452

3 Answers3

7

It is often easier to look for what form the antiderivative would be and differentiating that when dealing with messy rational functions.

Use the quotient rule to see that we have:

\begin{align}\frac{\mathrm d}{\mathrm dx}\frac{f(x)}{(1-x^4)^{5/2}}&=\frac{(1-x^4)^{5/2}f'(x)+10x^3(1-x^4)^{3/2}f(x)}{(1-x^4)^5}\\&=\frac{(1-x^4)f'(x)+10x^3f(x)}{(1-x^4)^{7/2}}\end{align}

We seek to then solve

$$x^4+x^8=(1-x^4)f'(x)+10x^3f(x)$$

It is easy to verify that we then have $f(x)=x^5/5$ by substituting in a polynomial of degree $5$ to match the power on the LHS. Hence we conclude:

$$\int\frac{x^4+x^8}{(1-x^4)^{7/2}}~\mathrm dx=\frac{x^5}{5(1-x^4)^{5/2}}+C$$

2

Let $t=\frac x{\sqrt{1-x^4}}$ and $dt = \frac{1+x^4}{(1-x^4)^{3/2}}dx$

$$\int \dfrac{x^4+x^8}{(1-x^4)^{7/2}} dx =\int t^4dt = \frac15t^5+C$$

Quanto
  • 97,352
  • Intriguing approach. My bible is Calculus (volumes 1 and 2) by Apostol, which does not contain any guidance for adopting your approach as a first try (i.e. it does, for example, advocate attacking $\int R(x, \sqrt{a^2 - [cx + d]^2})dx$ via $cx+d = a \sin t$. Is there a calculus textbook that explores problems similar to the one queried here, advocating customized approaches for each such problem? – user2661923 Dec 26 '19 at 04:47
  • 1
    Integrals such as this one barely have any practical significance. They are customarily designed to explore ‘perfect’ substitution identified here. They are many of kinds for which the textbook techniques for integration are ineffective. Another example is $\int \frac1{(1+x)\sqrt{1-x^2}}dx=-2\sqrt t$, where the perfect substitute is $t=\frac{1-x}{1+x}$ – Quanto Dec 26 '19 at 05:30
0

As $\displaystyle\int\dfrac{x^3}{(1-x^4)^m}dx=\dfrac1{4(m-1)(1-x^4)^{m-1}},$

$$I(m,n)=\int\dfrac{x^{4n-3}\cdot x^3}{(1-x^4)^m}dx=x^{4n-3}\int\dfrac{x^3}{(1-x^4)^m}dx-\int\left(\dfrac{d(x^{4n-3})}{dx}\int\dfrac{x^3}{(1-x^4)^m}dx\right)dx$$

$$=\dfrac{x^{4n-3}}{4(m-1)(1-x^4)^{m-1}}-(4n-3)\int\dfrac{x^{4n-4}}{4(m-1)(1-x^4)^{m-1}}dx$$

$$=\dfrac{x^{4n-3}}{4(m-1)(1-x^4)^{m-1}}-\dfrac{4n-3}{4(m-1)}\int\dfrac{x^{4n-4}(1-x^4)}{(1-x^4)^m}dx$$

$$\implies I(m,n)\left(1-\dfrac{4n-3}{4(m-1)}\right)+\dfrac{4n-3}{4(m-1)}\cdot I(m,n-1)=\dfrac{x^{4n-3}}{4(m-1)(1-x^4)^{m-1}}$$

Set $1-\dfrac{4n-3}{4(m-1)}=\dfrac{4n-3}{4(m-1)}\iff 4n=2m+1$

$$\implies\dfrac12\left(I\left(m,\dfrac{2m+1}4\right) + I\left(m,\dfrac{2m-3}4\right)\right)=\dfrac{x^{2m+1-3}}{4(m-1)(1-x^4)^{m-1}}$$

Finally set $n=2\iff2m=7$