Use the Chinese Remainder Theorem to find all solutions to the system of congruences
$$x\equiv 1\pmod 3$$ $$x\equiv3\pmod 5$$ $$x\equiv5\pmod 7$$
Use the Chinese Remainder Theorem to find all solutions to the system of congruences
$$x\equiv 1\pmod 3$$ $$x\equiv3\pmod 5$$ $$x\equiv5\pmod 7$$
We have $$x+2\equiv0\pmod3$$ $$x+2\equiv0\pmod5$$ $$x+2\equiv0\pmod7$$ A number if divisible by $3$, $5$, $7$ iff it’s divisible by $3\times5\times7=105$. Therefore, we must have $$x+2\in\{105k\mid k\in\mathbb Z\}\Rightarrow$$ $$x\in\{105k-2\mid k\in\mathbb Z\}.$$