Given naturals $m_1, m_2, \cdots, m_{r - 1}, m_r$, prove that $$\large \frac{\displaystyle \left(\sum_{i = 1}^rm_{i} - 1\right)! \cdot \gcd(m_1, m_2, \cdots, m_{r - 1}, m_{r})}{\displaystyle \prod_{i = 1}^rm_{i}!} \in \mathbb Z^+$$
We have that $$v_n(m!) = \sum_{i = 1}^{+\infty}\left\lfloor\frac{m}{n^i}\right\rfloor$$
It is sufficient to prove that $$\left\lfloor\frac{\displaystyle \sum_{i = 1}^rm_{i} - 1}{n}\right\rfloor \cdot v_n(\gcd(m_1, m_2, \cdots, m_{r - 1}, m_{r})) \ge \sum_{i = 1}^r\left\lfloor\frac{m_i}{n}\right\rfloor$$
Write $m_i = np_i + q_i$ where $p_i \in \mathbb Z^+$ and $0 \le q_i < n$ $(i = \overline{1, r})$.
We have that $$\sum_{i = 1}^rm_{i} - 1 = n \cdot \sum_{i = 1}^rp_i + \sum_{i = 1}^rq_i = np + q$$
where $$p = \sum_{i = 1}^rp_i + \left\lfloor\frac{\displaystyle \sum_{i = 1}^rq_i}{n}\right\rfloor$$ and $$q = n \cdot \left\{\frac{\displaystyle \sum_{i = 1}^rq_i}{n}\right\}$$
$(p \in \mathbb Z^+$ and $0 \le q < n)$
The above inequation becomes $$n \cdot \left\{\frac{\displaystyle \sum_{i = 1}^rq_i}{n}\right\} \cdot v_n(\gcd(m_1, m_2, \cdots, m_{r - 1}, m_{r})) \ge \sum_{i = 1}^r\left\lfloor\frac{q_i}{n}\right\rfloor$$
Then I'm not sure what to do next.