I tried to derive the formula second derivatives from Wikipedia:
$$f''\left( x\right) =\lim _{h\rightarrow 0}\dfrac {f\left( x+h\right) -2f\left( x\right) +f\left( x-h\right) }{h^{2}}$$
Let $y=f(u)$ and using first principles, since $$\dfrac {dy}{du}=\lim _{k\rightarrow 0}\dfrac {f\left( u+k\right) -f\left( u\right) }{k}$$ therefore, $$\dfrac {d^{2}y}{dx^{2}}=\dfrac {d\left( \dfrac {dy}{du}\right) }{dx}= \lim _{h\rightarrow 0} \dfrac{\left.\dfrac {dy}{du}\right|_{u= x+h}-\left.\dfrac {dy}{du}\right|_{u=x}}{h}\\ = \lim _{h\rightarrow 0}\dfrac {\lim _{k\rightarrow 0}\dfrac {f\left( x+h+k\right) -f\left( x+h\right) }{k}-\lim _{k\rightarrow 0}\dfrac {f\left( x+k\right) -f\left( x\right) }{k}}{h} \\ = \lim _{h\rightarrow 0}\dfrac {\lim _{k\rightarrow 0}\dfrac {f\left( x+h+k\right) -f\left( x+h\right) -f\left( x+k\right) +f\left( x\right) }{k}}{h} $$ And I’m stuck with a stacked limit of two bound variables. So what have I done wrong?