Evaluate $$\sum_{n=0}^\infty (n+1)\left(\frac13\right)^n.$$
$$1 + 2\left(\frac{1}{3}\right) + 3\left(\frac{1}{3}\right)^2 + 4\left(\frac{1}{3}\right)^3 + 5\left(\frac{1}{3}\right)^4 +\cdots$$
Show using ‘Techniques of Convergence of Geometric Series’ only that it converges to 9/4?