Suppose we have $\pi$ and $\pi x$ where $x>0$ is an integer.
I) We don't know if $\pi$ is algebraic or not. (Let's pretend)
II) We are dealing with two set of numbers: algebraic and transcendentals.
In the sum:
$$\pi+\pi x$$
suppose we can prove that $\pi$ and $\pi x$ can't be simultaneously algebraics (For example; if we assume that both are algebraic at the same time, we arrive at a contradiction). What can we conclude from that?
For a positive integer $x$, in the sum $\pi+\pi x$, $\pi$ and $\pi x$ can't be at the same time algebraics, so, in the sum $\pi+\pi x$:
$i)$ $\pi$ is algebraic and $\pi x$ is transcendental (?)
$ii)$ $\pi$ is transcendental and $\pi x$ is transcendental (?)
are these conclusions correct? How this helps in establishing the transcendence of $\pi$? I mean, statement $ii)$ literally reads, for $x=1$: $\pi$ is transcendental and $\pi$ is transcendental
If we put $x=1$, we have
$$\pi+\pi$$
if $\pi$ and $\pi$ can't be simultaneously algebraics, does that mean that $\pi$ is transcendental?