The usual recurrence for Chebyshev is
$$ T_{n+1}(x) + T_{n-1}(x) = 2 x T_n(x), \quad T_0(x) = 1, \quad T_1(x) = x. \tag{1} $$
Consider the polynomial sequence
$$ f_n(t) := \sum_{k=0}^n \frac{(n+k-1)!\, n}{(n-k)!\,(2k)!}t^k, \qquad f_0(t) := 1. \tag{2} $$
We can prove it satisfies the recursion
$$ f_{n+1}(t) + f_{n-1}(t) = (2+t)f_n(x). \tag{3} $$
The method is to compare coefficients of $\,t^k\,$ using
the identity
$$ \frac{(n+k)(n+k-1)(n+1)}{(n+1-k)(n-k)} + (n-1) =\\
\frac{(n+k-1)(2n)}{(n-k)} + \frac{(2k)(2k-1)n}{(n+1-k)(n-k)}. \tag{4} $$
Finally, notice that if $\,2+t=2x\,$ then $\,1+t/2=x\,$ and therefore
$\, T_n(x) = f_n(t).\,$
The idea is that the usual Chebyshev polynomials satisfy
$$ |T_n(x)| \le 1 \qquad \text{ if } \quad -1\le x \le 1 \tag{5} $$
while the related polynomials satisfy
$$ |f_n(t)| \le 1 \qquad \text{ if } \quad -4\le x \le 0.\tag{6} $$
and so their domains are shifted and scaled differently.