Let $\left[ {a,b} \right] \subset \mathbb{R}$ and $f,g:\left[ {a,b} \right] \to \mathbb{R}$ be two Riemann-integrable functions.
Let $a = {x_0} < {x_1} < {x_2}... < {x_n} = b$ be a partition of $\left[ {a,b} \right]$ and let $\Delta x = \mathop {\max }\limits_{i = 0}^{n - 1} \left( {{x_{i + 1}} - {x_i}} \right)$.
Let ${t_i} \in \left[ {{x_i},{x_{i + 1}}} \right],\;i = 0,n - 1$ and let $k \in {\mathbb{N}^*}$.
I’d like to prove that
$\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sum\limits_{i = 0}^{n - 1} {{{\left( {{x_{i + 1}} - {x_i}} \right)}^k}f\left( {{t_i}} \right)} }}{{\sum\limits_{i = 0}^{n - 1} {{{\left( {{x_{i + 1}} - {x_i}} \right)}^k}g\left( {{t_i}} \right)} }} = \frac{{\int\limits_a^b {f\left( x \right){\text{d}}x} }}{{\int\limits_a^b {g\left( x \right){\text{d}}x} }}$
It is obvious for equally spaced partitions ${x_{i + 1}} - {x_i} \equiv \Delta x$
$\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sum\limits_{i = 0}^{n - 1} {\Delta {x^k}f\left( {{t_i}} \right)} }}{{\sum\limits_{i = 0}^{n - 1} {\Delta {x^k}g\left( {{t_i}} \right)} }} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sum\limits_{i = 0}^{n - 1} {\Delta xf\left( {{t_i}} \right)} }}{{\sum\limits_{i = 0}^{n - 1} {\Delta xg\left( {{t_i}} \right)} }} = \frac{{\int\limits_a^b {f\left( x \right){\text{d}}x} }}{{\int\limits_a^b {g\left( x \right){\text{d}}x} }}$
But I don’t see how to do it in the general case?