I am trying to show that the product of all irreducible polynomials of degrees 1,2 and 4 over $\mathbb{F}_2$ is $x^{16} - x$.
I know the irreducible factors have degree 16. The irreducible factors of degree 4 were found in this post: Find all irreducible monic polynomials in $\mathbb{Z}/(2)[x]$ with degree equal or less than 5. I notice that the roots of $x^{16} - x$ are a finite field of 16 elements and since each irreducible factor is distinct in the product there are 16 distinct roots of the product of all the polynomials of degrees 1,2 and 4.
How can I make use of the fact that splitting fields are unique (up to isomorphism) to help in this case?