Let $p$ and $q$ be different prime numbers.
How to show that $[\mathbb{Q}(\sqrt{p}, \sqrt{q}):\mathbb{Q}]=4$?
I know it can be shown with $\mathbb{Q}(\sqrt{p},\sqrt{q})=\mathbb{Q}(\sqrt{p})(\sqrt{q})$, but I tried it differently and I'm looking for an alternative proof, so I tried it like this, but I'm not sure if my proof is correct:
Let $M$ be a field extension with $\mathbb{Q} \subset M \subset \mathbb{Q}(\sqrt{p},\sqrt{q})$, then
$[\mathbb{Q}(\sqrt{p},\sqrt{q}):\mathbb{Q}]=[\mathbb{Q}(\sqrt{p},\sqrt{q}):M] \cdot [M : \mathbb{Q}]$.
It's $M=\mathbb{Q}(\sqrt{p}) \subset \mathbb{Q}(\sqrt{p},\sqrt{q})$
Also, $[\mathbb{Q}(\sqrt{p}):\mathbb{Q}]=2$ with basis $\lbrace 1, \sqrt{p} \rbrace$ and $[\mathbb{Q}(\sqrt{q}):\mathbb{Q}]=2$ with basis $\lbrace 1, \sqrt{q} \rbrace$
That's why $2\mid[\mathbb{Q}(\sqrt p,\sqrt q):\mathbb{Q}]\mid 2\cdot 2=4$
The index is $4$ since:
It's $m=n \in \lbrace 1,2 \rbrace$, with $m=[ \mathbb{Q}(\sqrt{p},\sqrt{q}):\mathbb{Q}(\sqrt{p})]$ and $n=[\mathbb{Q}(\sqrt{p},\sqrt{q}):\mathbb{Q}(\sqrt{q})]$
Suppose $m=n=1$:
Then $\sqrt{q} \in \mathbb{Q}(\sqrt{p})$, so $\sqrt{q}=a+b\sqrt{p}\Leftrightarrow q = a^2 + 2ab\sqrt p + b^2p$ with $a,b \in \mathbb{Q}$.
So $q-a^2-b^2p$ is rational and that's why $ab=0$.
It's $b \neq 0$, since rational numbers can't be equal to irrational numbers and $a \neq 0$, since then $\sqrt q=b\sqrt p$ and $b=\sqrt{q/p}$, which is impossible.
So, $m=n=2$ and
$[\mathbb{Q}(\sqrt{p},\sqrt{q}):\mathbb{Q}]=2 \cdot 2=4$
Is my proof right? I don't know if it can be shown like this.