Hint:
Let $q=m\sinh u$ ,
Then $dq=m\cosh u$
$\therefore\int\dfrac{q^2}{2\pi^2}\dfrac{\sin(\sqrt{q^2+m^2}t)}{\sqrt{q^2+m^2}}\dfrac{\sin (qr)}{qr}~dq$
$=\int\dfrac{m^2\sinh^2u}{2\pi^2}\dfrac{\sin\left(t\sqrt{m^2\sinh^2u+m^2}\right)}{\sqrt{m^2\sinh^2u+m^2}}\dfrac{\sin(rm\sinh u)}{rm\sinh u}~d(m\sinh u)$
$=\dfrac{m}{2\pi^2r}\int\sin(mr\sinh u)\sin(mt\cosh u)\sinh u~du$
$=\dfrac{m}{4\pi^2r}\int\cos(mr\sinh u-mt\cosh u)\sinh u~du-\dfrac{m}{4\pi^2r}\int\cos(mr\sinh u+mt\cosh u)\sinh u~du$
$=\dfrac{m}{8\pi^2r}\int e^u\cos\left(\dfrac{m(r-t)e^u}{2}-\dfrac{m(r+t)}{2e^u}\right)~du-\dfrac{m}{8\pi^2r}\int e^{-u}\cos\left(\dfrac{m(r-t)e^u}{2}-\dfrac{m(r+t)}{2e^u}\right)~du-\dfrac{m}{8\pi^2r}\int e^u\cos\left(\dfrac{m(r+t)e^u}{2}-\dfrac{m(r-t)}{2e^u}\right)~du+\dfrac{m}{8\pi^2r}\int e^{-u}\cos\left(\dfrac{m(r+t)e^u}{2}-\dfrac{m(r-t)}{2e^u}\right)~du$