Continuing http://math.stackexchange.com/a/2431263, it seems to me that you can prove with the same method that $(n+1)! = o(n^n)$.
Namely:
Let $a_n=\frac{(n+1)!}{n^n}$. Then:
$$\frac{a_{n+1}}{a_n}=\frac{\frac{(n+2)!}{(n+1)^{n+1}}}{\frac{(n+1)!}{n^n}}=\frac{n^n(n+2)!}{(n+1)!(n+1)^{n+1}}=\frac{n^n}{(n+1)^n}\frac{n+2}{n+1}=\left(\frac{n}{n+1}\right)^n \left(1+\frac{1}{n+1}\right) \to \frac{1}{e}\cdot 1 <1$$
Thus from ratio test for sequences we have that $a_n \to 0$.
Can anyone confirm or reject this?