For any positive number $n$, let $a_n = \sqrt{2+\sqrt{2+{...+\sqrt{2+\sqrt 2}}}}$ ($2$ appear $n$) and let $k$ is positive number such that $\displaystyle\frac{1}{k}\leq\frac{3-a_{n+1}}{7-a_n}$ for any positive number $n$, then find the smallest positive number $k$.
I have $a_1=\sqrt 2$ and $a_{n+1}=\sqrt{2+a_n}, \forall n \in\mathbb N $
Consider
$a_1=\sqrt 2 \lt 2$
$a_2=\sqrt{2+a_1}\lt\sqrt{2+2}=2$
$a_3=\sqrt{2+a_2}\lt\sqrt{2+2}=2$
Use Mathematical Induction, I conclude $\sqrt 2\leq a_n\leq 2,\forall n\in\mathbb N$
Thus, $3-a_{n+1}\gt1$ and $7-a_{n}\gt 5$
Since $k\in\mathbb N$, I have $\displaystyle k\geq\frac{7-a_n}{3-a_{n+1}}=\frac{7-a_n}{3-\sqrt{2+a_n}}=3+\sqrt{2+a_n}=3+a_{n+1}$
Hence, $3+\sqrt 2\leq 3+a_{n+1}\leq 3+2=5$
Therefore $k=5$
Please check my solution, Is it correct?, Thank you