I have a question about the proof that $\sqrt[12]{31}+\sqrt[31]{12}$ is irrational.
The proof should be:
Suppose $\sqrt[12]{31}+\sqrt[31]{12}$ is rational. Then
$\sqrt[12]{31} \in \mathbb{Q}(\sqrt[31]{12})$ and $\mathbb{Q}(\sqrt[12]{31}) \subset \mathbb{Q}(\sqrt[31]{12})$
As dim$_{\mathbb{Q}(\sqrt[12]{31})}=12$ over $\mathbb{Q}$, $\mathbb{Q}(\sqrt[12]{31})$ can't be a subset of $\mathbb{Q}(\sqrt[31]{12})$, because dim$_{\mathbb{Q}(\sqrt[31]{12})}=31$ over $\mathbb{Q}$.
Is that accurate?
I don't understand why $\sqrt[12]{31} \in \mathbb{Q}(\sqrt[31]{12})$, if $\sqrt[12]{31}+\sqrt[31]{12}$ is rational and how to see the conclusion that the dimension dim$_{\mathbb{Q}(\sqrt[12]{31})}=12$.