I see here: Vector derivative w.r.t its transpose $\frac{d(Ax)}{d(x^T)}$ that that which is stated in the title is true. However, I tried deriving it myself.
$U = \mathbf{x}^T\mathbf{A}$
$\frac{\partial(\mathbf{x}^T\mathbf{Ax})}{\partial \mathbf{x}} = \frac{\partial U}{\partial\mathbf{x}} \mathbf{x} + U\frac{\partial\mathbf{x}}{\partial\mathbf{x}}$
$\frac{\partial(\mathbf{x}^T\mathbf{Ax})}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}^T\mathbf{A}}{\partial\mathbf{x}} \mathbf{x} + \mathbf{x}^T\mathbf{A}$
$\frac{\partial(\mathbf{x}^T\mathbf{Ax})}{\partial \mathbf{x}} = \mathbf{A}^T\mathbf{x} + \mathbf{x}^T\mathbf{A} = 2\mathbf{x}^T\mathbf{A} \neq x^TA^T+x^TA$
Am I applying product rule correctly?