Question: Find the maximum of $x^{x^{x^{⋰}}}.$
Let $y = x^{x^{x^{⋰}}}.$ Then \begin{align} y & = x^y \\ \Rightarrow \ln y & = y\ln x \\ \Rightarrow \frac{1}{y} \frac{dy}{dx} & = y\left(\frac{1}{x}\right) + \ln x \cdot \frac{dy}{dx}. \end{align} Since we are looking for maximum, we set $\frac{dy}{dx} = 0.$ So, $$\frac{y}{x} = 0$$ $$\Rightarrow y = 0.$$ I am not sure what's wrong here.