I've tried to solve the limit $$ \lim_{n \to \infty} \binom{2n}{n}$$ but I'm not sure.
$ \lim_{n \to \infty} \binom{2n}{n} = \lim_{n \to \infty} \frac{(2n)!}{n! n!} $
Now I have put $\frac{(2n)!}{n! n!} \sim \frac{(2n)^{2n}}{n^n n^n } =\frac{(2n)^{2n}}{n^{2n} }= (\frac{2n}{n})^{2n}=2^{2n} \rightarrow +\infty$
Is it right?