I've been pondering the following question.
How can we measure the amount of "space" above an element $p$ in a partially ordered set $P$?
One way would be to try to cram the elements of increasingly large ordinals into the space above $p$, respecting order. The least ordinal whose elements "don't fit" is then a measure of the amount of space above $p$ in $P$.
This suggests the following definition. (Recall that an order monomorphism preserves strict order relationships).
Definition. Given a partially ordered set $P$ and an element $p \in P$, the cramming ordinal of $p$ is the least ordinal $\alpha$ such that there is no order monomorphism $f : \alpha \rightarrow P$ satisfying $f(0)=p$.
This begs the following question.
What is the cramming ordinal of the element $0 \in \mathbb{R}$?
(Actually, I presume all elements of $\mathbb{R}$ have the same cramming ordinal in $\mathbb{R}$, but lets just consider $0$ for concreteness).
Now observe that $\omega$ is a lower bound for the cramming ordinal of $0$, because $f$ is witnessed by the identity function.
Observe also that given a monomorphism $f : \alpha \rightarrow \mathbb{R}$ satisfying $f(0)=0$, it holds that $\tan^{-1} \circ f$ is also a monomorphism. However, the range of $\tan^{-1} \circ f$ is bounded above in $\mathbb{R}$. So we can copy the idea of $\tan^{-1} \circ f$ repeatedly, in fact $\omega$ many times. So if $\alpha$ is a lower bound for the cramming ordinal of $0$, then $\alpha \omega$ is a lower bound, too.
Thus since $\omega$ is a lower bound for the cramming ordinal of $0$, so too are $\omega^2$, $\omega^3$ etc.
My question is, what is the cramming ordinal of $0 \in \mathbb{R}$?