4

Trying to simplify a calculation I have found by numerical experiments the following interesting result: $$ \underset{z=1}{\operatorname{Res}}\frac{z^{p-1}}{(z^n-1)^q}= \frac qp\frac{\left(\frac pn\right)^{\underline{q}}}{q!} \equiv\frac qp\binom{\frac pn}q, $$ where $p,q,n$ are positive integers and $x^{\underline r}=x(x-1)\cdots(x-r+1)$ means the falling factorial.

Is there a simple way to prove this?

user
  • 26,272
  • I'm assuming a "simple" proof you want can't be the one that involves taking $q-1$ derivatives? – Sean Nemetz Dec 13 '19 at 18:50
  • 1
    You are looking for the coefficient at $z^{-1}$ in the Laurent expansion. Try setting $t=z^{-n}$ and differentiating the geometric series in $t$. – Valentin Dec 16 '19 at 23:38
  • 1
    @Valentin Thank you for the comment. In fact I am looking for the coefficient at $(z-1)^{−1}$ and meanwhile I proved the conjecture. – user Dec 17 '19 at 18:39
  • of course, you are right, that's $(z-1)^{-1}$ – Valentin Dec 17 '19 at 20:50

2 Answers2

3

For $k\ge1$, consider $$ \left(\frac{z^p}{(z^n-1)^k}\right)' = (p-nk)\frac{z^{p-1}}{(z^n-1)^k} - nk\frac{z^{p-1}}{(z^n-1)^{k+1}}. $$ The LHS is a derivative, so its residue is $0$ anywhere. Hence, $$ \mathop{\rm Res}_{z=1}\frac{z^{p-1}}{(z^n-1)^{k+1}} = \frac{\frac{p}{n}-k}{k} \cdot \mathop{\rm Res}_{z=1}\frac{z^{p-1}}{(z^n-1)^k}. $$ Repeating this step for $k=q-1,q-2,\ldots,1$ we obtain $$ \mathop{\rm Res}_{z=1}\frac{z^{p-1}}{(z^n-1)^q} = \left(\prod_{k=1}^{q-1} \frac{\frac{p}{n}-k}{k}\right) \cdot \mathop{\rm Res}_{z=1}\frac{z^{p-1}}{z^n-1} = \binom{\frac{p}{n}-1}{q-1} \cdot \frac1n = \frac{q}{p} \cdot \binom{\frac{p}{n}}{q}. $$ (In the last step, in $\frac{z^{p-1}}{z^n-1}$ the denominator has a single root at $1$, so $\mathop{\rm Res}_{z=1}\frac{z^{p-1}}{z^n-1}=\frac{z^{p-1}}{(z^n-1)'}\bigg|_{z=1}=\frac1n$.)

G.Kós
  • 14,297
  • Very nice proof! I would however suggest you to add more details explaining "we can get" part and the origin of the factor $\frac1n$. I suspect it can be difficult for a lay reader. – user Dec 17 '19 at 21:10
  • OK, added a few lines of explanation. – G.Kós Dec 18 '19 at 06:50
2

The next one-line derivation is based on the following lemma: $$ \underset{z=h(a)}{\operatorname{Res}}f(z)=\underset{z=a}{\operatorname{Res}}f(h(z))h'(z),\tag1 $$ where $h$ is analytic in the neighborhood of $a$ and $h'(a)\ne0$.

Let $$ f(z)=\frac{z^{p-1}}{(z^n-1)^q};\quad h(z)=(1+z)^\frac1n. $$ Observe that $h(z)$ is analytic in the neighborhood of $z=0$, $h(0)=1$ and $h'(0)=\dfrac1n\ne0$.

We have: $$ f(h(z))h'(z)=\frac{(1+z)^\frac{p-1}n}{z^q}\frac{(1+z)^{\frac1n-1}}n =\frac{(1+z)^{\frac pn-1}}{nz^q}\stackrel{(|z|<1)}=\frac{\sum_{k\ge0}\binom{\frac pn-1}kz^k}{nz^q}\\ \implies \underset{z=1}{\operatorname{Res}}f(z)= \underset{z=0}{\operatorname{Res}}f(h(z))h'(z)=\frac{1}{n}\binom{\frac pn-1}{q-1} =\frac qp\binom{\frac pn}{q}. $$

user
  • 26,272