Some great answers have already been provided. You can also do this using inclusion–exclusion.
There are five conditions to fulfill, namely to have obtained the required amount of each of the five materials. Denote by $N$ the number of lockers needed to fulfill all five conditions. Denote by $N_i$ the number of lockers needed to fulfill condition $i$, by $N_{ij}$ the number of lockers needed to fulfill at least one of conditions $i$ and $j$, and so on. Then by inclusion–exclusion
$$
P(N\gt n)=\sum_iP(N_i\gt n)-\sum_{\{i,j\}}P(N_{ij}\gt n)+\sum_{\{i,j,k\}}P(N_{ijk}\gt n)-\cdots\;.
$$
Summing over $n$ yields the corresponding expression for the expectations:
$$
E[N]=\sum_iE[N_i]-\sum_{\{i,j\}}E[N_{ij}]+\sum_{\{i,j,k\}}E[N_{ijk}]-\cdots\;.
$$
Denote by $m_i$ the amount of material $i$ required and by $p_i$ the probability to obtain material $i$ in a locker.
Then $E[N_i]=\frac{m_i}{p_i}$. Similarly, if $m_i=m_j=1$, then $E[N_{ij}]=\frac1{p_i+p_j}$, and if $m_i=m_j=m_k=1$, then $E[N_{ijk}]=\frac1{p_i+p_j+p_k}$.
If $m_i\gt1$ and $m_j=1$, then
$$
P(N_{ij}\gt n)=\sum_{l=0}^{m_i-1}\binom nlp_i^l(1-p_i-p_j)^{n-l}
$$
and
\begin{eqnarray*}
E[N_{ij}]
&=&
\sum_{n=0}^\infty P(N_{ij}\gt n)
\\
&=&
\sum_{n=0}^\infty\sum_{l=0}^{m_i-1}\binom nlp_i^l(1-p_i-p_j)^{n-l}
\\
&=&
\sum_{l=0}^{m_i-1}\left(\frac{p_i}{1-p_i-p_j}\right)^l\sum_{n=0}^\infty\binom nl(1-p_i-p_j)^n
\\
&=&
\sum_{l=0}^{m_i-1}\left(\frac{p_i}{1-p_i-p_j}\right)^l\frac{(1-p_i-p_j)^l}{(p_i+p_j)^{l+1}}
\\
&=&
\frac1{p_i+p_j}\sum_{l=0}^{m_i-1}\left(\frac{p_i}{p_i+p_j}\right)^l
\\
&=&
\frac1{p_j}\left(1-\left(\frac{p_i}{p_i+p_j}\right)^{m_i}\right)\;.
\end{eqnarray*}
The calculation is essentially the same if we include more than one material of which we require only $1$, e.g. $j$ and $k$ with $m_j=m_k=1$, with $p_j+p_k$ taking the role of $p_j$ above:
$$
E[N_{ijk}]=\frac1{p_j+p_k}\left(1-\left(\frac{p_i}{p_i+p_j+p_k}\right)^{m_i}\right)\;.
$$
Having in mind this way of including any number of conditions with requirement $1$, let's do $m_i\gt1$, $m_j\gt1$ with $m_k=1$ included right away, and we can set $p_k=0$ to get the result for just $m_i\gt1$, $m_j\gt1$ alone:
$$
P(T_{ijk}\gt n)=\sum_{l=0}^{m_i-1}\sum_{r=0}^{m_j-1}\binom nk\binom{n-k}rp_i^lp_j^r(1-p_i-p_j-p_k)^{n-l-r}\;,
$$
and thus
\begin{eqnarray*}
E[N_{ijk}]
&=&
\sum_{n=0}^\infty P(T_{ijk}\gt n)
\\
&=&
\sum_{n=0}^\infty\sum_{l=0}^{m_i-1}\sum_{r=0}^{m_j-1}\binom nk\binom{n-k}rp_i^lp_j^r(1-p_i-p_j-p_k)^{n-l-r}
\\
&=&
\sum_{l=0}^{m_i-1}\sum_{r=0}^{m_j-1}\frac{p_i^lp_j^r}{(1-p_i-p_j-p_k)^{l+r}}\sum_{n=0}^\infty\binom nk\binom{n-k}r(1-p_i-p_j-p_k)^n
\\
&=&
\sum_{l=0}^{m_i-1}\sum_{r=0}^{m_j-1}\frac{p_i^lp_j^r}{(1-p_i-p_j-p_k)^{l+r}}
\binom{l+r}l\frac{(1-p_i-p_j-p_k)^{l+r}}{(p_i+p_j+p_k)^{l+r+1}}
\\
&=&
\frac1{p_i+p_j+p_k}\sum_{l=0}^{m_i-1}\sum_{r=0}^{m_j-1}\binom{l+r}l\left(\frac{p_i}{p_i+p_j+p_k}\right)^l\left(\frac{p_j}{p_i+p_j+p_k}\right)^r\;.
\end{eqnarray*}
Now we have all the ingredients for our $31$-term inclusion–exclusion sum:
$$
E[N]=
\frac4{\frac3{10}}
+\frac1{\frac1{20}}
+\frac1{\frac7{20}}
+\frac1{\frac1{10}}
+\frac2{\frac1{10}}
-\frac1{\frac1{20}}\left(1-\left(\frac{\frac3{10}}{\frac3{10}+\frac1{20}}\right)^4\right)
-\frac1{\frac7{20}}\left(1-\left(\frac{\frac3{10}}{\frac3{10}+\frac7{20}}\right)^4\right)
-\frac1{\frac1{10}}\left(1-\left(\frac{\frac3{10}}{\frac3{10}+\frac1{10}}\right)^4\right)
-\frac1{\frac1{20}}\left(1-\left(\frac{\frac1{10}}{\frac1{10}+\frac1{20}}\right)^2\right)
-\frac1{\frac7{20}}\left(1-\left(\frac{\frac1{10}}{\frac1{10}+\frac7{20}}\right)^2\right)
-\frac1{\frac1{10}}\left(1-\left(\frac{\frac1{10}}{\frac1{10}+\frac1{10}}\right)^2\right)
-\frac1{\frac1{20}+\frac7{20}}
-\frac1{\frac7{20}+\frac1{10}}
-\frac1{\frac1{10}+\frac1{20}}
+\frac1{\frac1{20}+\frac7{20}}\left(1-\left(\frac{\frac3{10}}{\frac3{10}+\frac1{20}+\frac7{20}}\right)^4\right)
+\frac1{\frac7{20}+\frac1{10}}\left(1-\left(\frac{\frac3{10}}{\frac3{10}+\frac7{20}+\frac1{10}}\right)^4\right)
+\frac1{\frac1{10}+\frac1{20}}\left(1-\left(\frac{\frac3{10}}{\frac3{10}+\frac1{10}+\frac1{20}}\right)^4\right)
+\frac1{\frac1{20}+\frac7{20}}\left(1-\left(\frac{\frac1{10}}{\frac1{10}+\frac1{20}+\frac7{20}}\right)^2\right)
+\frac1{\frac7{20}+\frac1{10}}\left(1-\left(\frac{\frac1{10}}{\frac1{10}+\frac7{20}+\frac1{10}}\right)^2\right)
+\frac1{\frac1{10}+\frac1{20}}\left(1-\left(\frac{\frac1{10}}{\frac1{10}+\frac1{10}+\frac1{20}}\right)^2\right)
+\frac1{\frac1{20}+\frac7{20}+\frac1{10}}
-\frac1{\frac1{20}+\frac7{20}+\frac1{10}}\left(1-\left(\frac{\frac3{10}}{\frac3{10}+\frac1{20}+\frac7{20}+\frac1{10}}\right)^4\right)
-\frac1{\frac1{20}+\frac7{20}+\frac1{10}}\left(1-\left(\frac{\frac1{10}}{\frac1{10}+\frac1{20}+\frac7{20}+\frac1{10}}\right)^2\right)\\
+\sum_{l=0}^3\sum_{r=0}^1\binom{l+r}r\left(
-\frac1{\frac3{10}+\frac1{10}}\left(\frac{\frac3{10}}{\frac3{10}+\frac1{10}}\right)^l\left(\frac{\frac1{10}}{\frac3{10}+\frac1{10}}\right)^r
+\frac1{\frac3{10}+\frac1{10}+\frac1{20}}\left(\frac{\frac3{10}}{\frac3{10}+\frac1{10}+\frac1{20}}\right)^l\left(\frac{\frac1{10}}{\frac3{10}+\frac1{10}+\frac1{20}}\right)^r\\
+\frac1{\frac3{10}+\frac1{10}+\frac7{20}}\left(\frac{\frac3{10}}{\frac3{10}+\frac1{10}+\frac7{20}}\right)^l\left(\frac{\frac1{10}}{\frac3{10}+\frac1{10}+\frac7{20}}\right)^r\\
+\frac1{\frac3{10}+\frac1{10}+\frac1{10}}\left(\frac{\frac3{10}}{\frac3{10}+\frac1{10}+\frac1{10}}\right)^l\left(\frac{\frac1{10}}{\frac3{10}+\frac1{10}+\frac1{10}}\right)^r\\
-\frac1{\frac3{10}+\frac1{10}+\frac1{20}+\frac7{20}}\left(\frac{\frac3{10}}{\frac3{10}+\frac1{10}+\frac1{20}+\frac7{20}}\right)^l\left(\frac{\frac1{10}}{\frac3{10}+\frac1{10}+\frac1{20}+\frac7{20}}\right)^r\\
-\frac1{\frac3{10}+\frac1{10}+\frac7{20}+\frac1{10}}\left(\frac{\frac3{10}}{\frac3{10}+\frac1{10}+\frac7{20}+\frac1{10}}\right)^l\left(\frac{\frac1{10}}{\frac3{10}+\frac1{10}+\frac7{20}+\frac1{10}}\right)^r\\
-\frac1{\frac3{10}+\frac1{10}+\frac1{10}+\frac1{20}}\left(\frac{\frac3{10}}{\frac3{10}+\frac1{10}+\frac1{10}+\frac1{20}}\right)^l\left(\frac{\frac1{10}}{\frac3{10}+\frac1{10}+\frac1{10}+\frac1{20}}\right)^r\\
+\frac1{\frac3{10}+\frac1{10}+\frac1{20}+\frac7{20}+\frac1{10}}\left(\frac{\frac3{10}}{\frac3{10}+\frac1{10}+\frac1{20}+\frac7{20}+\frac1{10}}\right)^l\left(\frac{\frac1{10}}{\frac3{10}+\frac1{10}+\frac1{20}+\frac7{20}+\frac1{10}}\right)^r
\right)
\\
=
\frac{40}3
+20
+\frac{20}7
+10
+20
-20\left(1-\left(\frac67\right)^4\right)
-\frac{20}7\left(1-\left(\frac6{13}\right)^4\right)
-10\left(1-\left(\frac34\right)^4\right)
-20\left(1-\left(\frac23\right)^2\right)
-\frac{20}7\left(1-\left(\frac29\right)^2\right)
-10\left(1-\left(\frac12\right)^2\right)
-\frac52
-\frac{20}9
-\frac{20}3
+\frac52\left(1-\left(\frac37\right)^4\right)
+\frac{20}9\left(1-\left(\frac25\right)^4\right)
+\frac{20}3\left(1-\left(\frac23\right)^4\right)
+\frac52\left(1-\left(\frac15\right)^2\right)
+\frac{20}9\left(1-\left(\frac2{11}\right)^2\right)
+\frac{20}3\left(1-\left(\frac25\right)^2\right)
+2
-2\left(1-\left(\frac38\right)^4\right)
-2\left(1-\left(\frac16\right)^2\right)\\
+\sum_{l=0}^3\sum_{r=0}^1\binom{l+r}r\left(
-\frac52\left(\frac34\right)^l\left(\frac14\right)^r
+\frac{20}9\left(\frac23\right)^l\left(\frac29\right)^r
+\frac43\left(\frac25\right)^l\left(\frac2{15}\right)^r
+2\left(\frac35\right)^l\left(\frac15\right)^r
-\frac54\left(\frac38\right)^l\left(\frac18\right)^r
-\frac{20}{17}\left(\frac6{17}\right)^l\left(\frac2{17}\right)^r
-\frac{20}{11}\left(\frac6{11}\right)^l\left(\frac2{11}\right)^r
+\frac{10}9\left(\frac13\right)^l\left(\frac19\right)^r
\right)
\\
=
\frac{40}3
-20
-\frac{20}7
-10
+20
+20\left(\frac67\right)^4
+\frac{20}7\left(\frac6{13}\right)^4
+10\left(\frac34\right)^4
+20\left(\frac23\right)^2
+\frac{20}7\left(\frac29\right)^2
+10\left(\frac12\right)^2
+\frac52
+\frac{20}9
+\frac{20}3
-\frac52\left(\frac37\right)^4
-\frac{20}9\left(\frac25\right)^4
-\frac{20}3\left(\frac23\right)^4
-\frac52\left(\frac15\right)^2
-\frac{20}9\left(\frac2{11}\right)^2
-\frac{20}3\left(\frac25\right)^2
-2
+2\left(\frac38\right)^4
+2\left(\frac16\right)^2\\
-\frac{1345}{128}
+\frac{16940}{2187}
+\frac{14716}{5625}
+\frac{3756}{625}
-\frac{9555}{4096}
-\frac{2984740}{1419857}
-\frac{780580}{161051}
+\frac{4180}{2187}
\\[15pt]
=\frac{36726346111860961183807819781}{1170579965612689097244979200}
\\[15pt]
\approx31.37448716939056356\;,
$$
in agreement with the other answers.