How to show $X_n \overset{\text{P}} \rightarrow X$ and $X_n \overset{\text{P}} \rightarrow Y$, then $X\overset{\text{a.s.}} \rightarrow Y$?
I try to show it below. Though I can not make sure. Can anyone give some suggestions?
$0\leq P(X\neq Y)\leq P(|(X_n-X)-|X_n-Y||>\varepsilon)\leq P(|(X_n-X)|>\varepsilon/2)+P(|(Y_n-X)|>\varepsilon/2) $
Thus $0\leq P(X\neq Y)\leq \lim_{n\rightarrow\infty}P(|(X_n-X)-|Y_n-Y||>\varepsilon)\leq \lim_{n\rightarrow\infty}P(|(X_n-X)|>\varepsilon/2)+P(|(Y_n-X)|>\varepsilon/2) $
Thus $P(X\neq Y)=0$ (since $\lim_{n\rightarrow\infty}P(X\neq Y)=P(X\neq Y)=0$
Thus $X \overset{\text{a.s.}} \rightarrow Y$
Also an question: Why not equal? Can anyone give a counterexample?
#
for arbitrary $\varepsilon>0$ Make some change: Thus $0\leq P(|X-Y|>\varepsilon)=P(|(X_n-X)-|Y_n-Y||>\varepsilon)\leq \lim_{n\rightarrow\infty}P(|(X_n-X)|>\varepsilon/2)+P(|(Y_n-X)|>\varepsilon/2) $
Thus $P(|X-Y|>\varepsilon)=0$ (since $\lim_{n\rightarrow\infty}P(|X-Y| > \varepsilon)) = P(|X-Y|>\varepsilon))=0$
Thus $\sum_{n=1}^{+\infty} P(|X-Y|>\varepsilon)<\infty$(?)
According to BC Lemma, we have $P(|X-Y|>\varepsilon, \text{ i.o.})=0$
Thus $X \overset{\text{a.s.}} \rightarrow Y$.
#
Make some change: for arbitrary $\varepsilon>0$ $0\leq P(|X-Y|>\varepsilon)=P(|(X_n-X)-|Y_n-Y||>\varepsilon)\leq \lim_{n\rightarrow\infty}P(|(X_n-X)|>\varepsilon/2)+P(|(Y_n-X)|>\varepsilon/2) $
Thus $P(|X-Y|>\varepsilon)=0$ (since $\lim_{n\rightarrow\infty}P(|X-Y|>\varepsilon))=P(|X-Y|>\varepsilon))=0$
Thus $\sum_{n=1}^{+\infty} P(|X-Y|>\varepsilon)<\infty$(?)
According to BC Lemma, we have $P(|X-Y|>\varepsilon, \text{ i.o.})=0$
Thus $X\overset{\text{a.s.}}\rightarrow Y$.