Here's a very basic counting argument.
Let $|G| = n = \prod_{i=1}^k\,p_i^{q_i}$, where the $p_i$ are distinct primes and the $q_i$ are $\geq 1$.
By Lagrange's Theorem, the order of each element must divide $n$.
Hence, if $G$ were not cyclic, there would be no element of order $n$ and we would have $2n$ equals
\begin{align}
&\sum_{0\leq l_k\leq q_k}\,\sum_{0\leq l_{k-1}\leq q_{k-1}}\,\dots\,
\sum_{0\leq l_2\leq q_2}\,\sum_{0\leq l_1\leq q_1}\,\left|\left\{g\in G\,\middle |\, o(g) = \prod_{i=1}^k\,p_i^{l_i}\right\}\right|
\\\leq\,\,\,&
\sum_{0\leq l_k\leq q_k}\,\sum_{0\leq l_{k-1}\leq q_{k-1}}\,\dots\,
\sum_{0\leq l_2\leq q_2}\,\sum_{0\leq l_1\leq q_1}\,\left|\left\{g\in G\,\middle |\, g^{\prod_{i=1}^k\,p_i^{l_i}}=e\right\}\right|
\\\leq\,\,\,&
\sum_{0\leq l_k\leq q_k}\,\sum_{0\leq l_{k-1}\leq q_{k-1}}\,\dots\,
\sum_{0\leq l_2\leq q_2}\,\sum_{0\leq l_1\leq q_1}\,\prod_{i=1}^k\,p_i^{l_i}
\\=\,\,\,&
\sum_{0\leq l_k\leq q_k}\,p_k^{l_k}\left(
\sum_{0\leq l_{k-1}\leq q_{k-1}}\,p_{k-1}^{l_{k-1}} \left(
\dots\,\left(
\sum_{0\leq l_2\leq q_2}\, p_2^{l_2}\,
\left(\frac{p_1^{q_1+1}-1}{p_1-1}\right)
\right)\right)\dots\right)
\\=\,\,\,&\left(\frac{p_1^{q_1+1}-1}{p_1-1}\right)\cdot
\sum_{0\leq l_k\leq q_k}\,p_k^{l_k}\left(
\sum_{0\leq l_{k-1}\leq q_{k-1}}\,p_{k-1}^{l_{k-1}} \left(
\dots\,\left(
\sum_{0\leq l_2\leq q_2}\, p_2^{l_2}\,
\right)\right)\dots\right)
\\=\,\,\,&\dots
\\=\,\,\,&\prod_{i=1}^k\frac{p_i^{q_i+1}-1}{p_i-1}.
\end{align}
However:
$$2n = \prod_{i=1}^k\,2p_i^{q_i} > \prod_{i=1}^k\frac{p_i^{q_i+1}-1}{p_i-1}.$$
Indeed, because $p_i$ is prime and hence $\geq 2$, we have that $2p_i^{q_i} > \frac{p_i^{q_i+1}-1}{p_i-1} \iff p_i^{q_i+1}+1>2p_i^{q_i}$.