0

Let $M_n( \Bbb{C} )$ be set of all $n \times n$ matrices over $$\{\Bbb{C}\setminus \Bbb{R} \}$$ then for $A,B \in M_n( \Bbb{C} )$ are similar iff minimal polynomial and characteristic polynomial of $A,B$ are same? Is this statement true! It is obvious that converse is true but I am not sure about the other way around! I know that above statement is not true if matrix is over $\Bbb{R}$ can we generalise it over $\Bbb{C}$ ? I am asking specifically for matrix with pure complex entries!

Alfha
  • 132

1 Answers1

1

Simple examples. $$ \newcommand{\abs}[1]{\left\vert #1 \right\vert} \newcommand\rme{\mathrm e} \newcommand\imu{\mathrm i} \newcommand\diff{\,\mathrm d} \DeclareMathOperator\sgn{sgn} \renewcommand \epsilon \varepsilon \newcommand\trans{^{\mathsf T}} \newcommand\F {\mathbb F} \newcommand\Z{\mathbb Z} \newcommand\R{\Bbb R} \newcommand \N {\Bbb N} \newcommand\bm\boldsymbol \bm A = \imu \begin{bmatrix} 1 & 1 & & \\ & 1 && \\ &&1&\\ &&&1 \end{bmatrix}, \bm B = \imu\begin{bmatrix} 1 & 1 & & \\ & 1 && \\ &&1&1\\ &&&1 \end{bmatrix}, $$ then both the minimal polynomials are $(x-\imu)^2$ and the characteristic polynolmials are $(x-\imu)^4$, but $\bm A, \bm B$ are not similar.

The statement is true if $n \leqslant 3$.

xbh
  • 8,835