Calculate the value of the following series
$\begin{align} \sum_{k=1}^\infty \frac{1}{2\cdot(k-1)+1} \cdot \frac{1}{2\cdot(k)+1} \cdot \frac{1}{2\cdot(k+1)+1} \cdots \frac{1}{2\cdot(k+N)+1} \end{align}$
Where $N \in \mathbb{N}_0$
This should be similar to the telescoping series in this question.
And the answer should be $\begin{align} \frac{2^{N-1}}{N+1}\cdot\frac{N!}{(2N+1)!} \end{align}$
Any help is appreciated.