$T(n)=T(n-1)+T\left(\dfrac{n}{2}\right)+n$
$T(n)-T(n-1)-T\left(\dfrac{n}{2}\right)=n$
Getting the particular solution part is very easy.
Let $T_p(n)=An+B$ ,
Then $An+B-(A(n-1)+B)-\left(\dfrac{An}{2}+B\right)\equiv n$
$-\dfrac{An}{2}+A-B\equiv n$
$\therefore\begin{cases}-\dfrac{A}{2}=1\\A-B=0\end{cases}$
$\begin{cases}A=-2\\B=-2\end{cases}$
$\therefore T_p(n)=-2n-2$
But getting the complementary solution part is quite difficult.
Since we should handle the equation $T_c(n)-T_c(n-1)-T_c\left(\dfrac{n}{2}\right)=0$ .
Let $T_c(n)=\int_0^\infty2^{nt}K(t)~dt$ ,
Then $\int_0^\infty2^{nt}K(t)~dt-\int_0^\infty2^{(n-1)t}K(t)~dt-\int_0^\infty2^{\frac{nt}{2}}K(t)~dt=0$
$\int_0^\infty2^{-nt}K(t)~dt-\int_0^\infty2^{nt}2^{-t}K(t)~dt-\int_0^\infty2^{nt}K(2t)~d(2t)=0$
$\int_0^\infty((1-2^{-t})K(t)-2K(2t))2^{nt}~dt=0$
$\therefore(1-2^{-t})K(t)-2K(2t)=0$
$K(2t)=\dfrac{1-2^{-t}}{2}K(t)$
Let $\begin{cases}t=2^u\\K(t)=F(u)\end{cases}$ ,
Then $F(u+1)=\dfrac{1-2^{-2^u}}{2}F(u)$
$F(u)=\dfrac{\prod\limits_{s=0}^\infty(1-2^{-2^u2^s})}{2^u}$
$K(t)=\dfrac{\prod\limits_{s=0}^\infty(1-2^{-t2^s})}{t}$
$\therefore T_c(n)=C\int_0^\infty\dfrac{2^{nt}\prod\limits_{s=0}^\infty(1-2^{-t2^s})}{t}dt$