Find the Maclaurin series for the function $$f(x)=x\ln(x+1)$$
So finding the derivatives is the first step. How many derivatives I need to find is explicitly said so I'll just go till the $4^{th}$ derivative.
$$\begin{align} f'(x)&=\frac{x}{x+1}+\ln(x+1) & f'(0) &=0 \\ f''(x)&=\frac{1}{(x+1)^2}+\frac{1}{x+1} & f''(0)&=2 \\ f^{(3)}(x)&=\frac{-x-3}{(x+1)^3} & f^{(3)}(0)&=0 \\ f^{(4)}(x)&=\frac{2x+8}{(x+1)^4} & f^{(4)}(0)&=8 \end{align}$$
So now plugging in for the Maclaurin form
$$P_n(x)=0+x^2-\frac{1}{2}x^3+\frac{1}{3}x^4+....$$
Is this correct?