I discovered that, for the convergence/divergence of series, the ratio test is stronger than the n-th root test. See here for more details. Since both tests should give rise to the same radius of convergence of any power series, I can deduce that $$ \lim_{n\to \infty} a_n^{1/n}=\lim_{n\to \infty} a_{n+1}/a_n=q $$ if both limits exist. Of course, all $a_n$ are non-negative.
To prove this directly, for all $\epsilon>0$, there exists $N$ such that $q+\epsilon>a_{n+1}/a_n>q-\epsilon$ for all $n\geq N$. Therefore, $$ a_{n+r}>(q-\epsilon)^r a_n, a_{n+r}^{1/r}>(q-\epsilon) a_n^{1/r}. $$ Taking the limit $r\to \infty$ gives $$ \lim_{r\to \infty} a_{n+r}^{1/r}\geq q-\epsilon. $$ Similarly, $$ \lim_{r\to \infty} a_{n+r}^{1/r}\leq q+\epsilon $$ Now let $k=n+r$, so $$ \lim_{k\to\infty} a_k^{1/k}\leq\lim_{k\to\infty} a_k^{\frac{1}{k-n}}\leq \lim_{k\to\infty} a_k^{\frac{1}{k}+\frac{n}{k^2}}=\lim_{k\to\infty} a_k^{\frac{1}{k}}a_k^{\frac{n}{k^2}}=\lim_{k\to\infty} a_k^{1/k}, $$ since $\lim_{k\to\infty} a_k^{\frac{n}{k^2}}=1$. So, $$ \lim_{n\to \infty} a_n^{1/n}=q. $$ The things that are unclear to me is the convergence of there two limits. I can find examples in which $\lim_{n\to \infty} a_n^{1/n}$ exists, but $a_{n+1}/a_n$ ediverges. However, is it possible that $\lim_{n\to \infty} a_n^{1/n}$ diverge when $a_{n+1}/a_n$ converges? Can I modify the above proof to prove that $\lim_{n\to \infty} a_n^{1/n}$ converges when $a_{n+1}/a_n$ converges?