I tried to solve with Fourier Transform. It is an exercise that appears in the context of Fourier Transforms.
Asked
Active
Viewed 92 times
0
-
1Fourier inversion? – Angina Seng Nov 29 '19 at 18:53
-
Possible duplicate of Calculating the integral $\int_{0}^{\infty} \frac{\cos x}{1+x^2}\mathrm{d}x$ without using complex analysis – RRL Dec 02 '19 at 06:44
1 Answers
1
Let $f(x) = \mathrm{e}^{-\lambda|x|}$ with $\lambda>0$. Warning, I add an absolute value and I assume $\lambda$ positive.
The Fourier transform is $F(y) = \int_{-\infty}^{+\infty}f(x)\mathrm{e}^{-\mathrm{i}xy}\mathrm{d}x = \frac{2\lambda}{y^2+\lambda^2}$.
Thus, $f(x) = \frac{1}{2\pi}\int_{-\infty}^{+\infty}F(y)\mathrm{e}^{+\mathrm{i}xy}\mathrm{d}y = \frac{1}{\pi}\int_{0}^{+\infty}F(y)\cos(xy)\mathrm{d}y$ because $F$ is even.
$$ \frac{\pi}{2\lambda}\mathrm{e}^{-\lambda|x|} = \int_{0}^{+\infty}\frac{\cos(xy)}{y^2+\lambda^2}\mathrm{d}y $$

Mister Da
- 388
- 1
- 9