TIL that if a series converges absolutely, the arithmetic, geometric, and harmonic means' serieses also converge to the same limit. Mathematically speaking:
If
$$\lim_{n \to \infty} a_n = L $$
Then:
$$\lim_{n \to \infty} \frac{a_1 + a_2 + ... + a_n}{n} = \lim_{n \to \infty} \sqrt[n]{a_1 a_2 a_3 ... a_n} = \lim_{n \to \infty} \frac{n}{a_1^{-1}+a_2^{-1}+\ldots+a_n^{-1}} = L$$
Partial proofs:
- Prove convergence of the sequence $(z_1+z_2+\cdots + z_n)/n$ of Cesaro means
- On Cesàro convergence: If $ x_n \to x $ then $ z_n = \frac{x_1 + \dots +x_n}{n} \to x $
Would this be true if $L = \infty$? If not, I'm seeking an example that will satisfy:
$$lim_{n \to \infty} a_n = \infty $$
While:
$$lim_{n \to \infty} \frac{a_1 + a_2 + ... + a_n}{n} = S $$