$a, b, c$ are given positive integers. I need $\sin(\alpha)$ or $\cos$ or anything simple with $\alpha$ from the equation:
$$a \sin(\alpha) - c \sin^2(\alpha) = b \cos(\alpha) - c \cos^2(\alpha)$$
$a, b, c$ are given positive integers. I need $\sin(\alpha)$ or $\cos$ or anything simple with $\alpha$ from the equation:
$$a \sin(\alpha) - c \sin^2(\alpha) = b \cos(\alpha) - c \cos^2(\alpha)$$
With this much information, you can use $$\cos\alpha=\frac{1-\tan^2\frac\alpha2}{1+\tan^2\frac\alpha2}\text{ and } \sin\alpha=\frac{2\tan\frac\alpha2}{1+\tan^2\frac\alpha2} $$ which will give you a Quartic Equation in $\tan\frac\alpha2$
Once you have solved for $\tan\frac\alpha2,$ you can easily get $\cos\alpha,\sin\alpha$ using the above formulae.
Alternatively, we can also do the following:
$$b\cos\alpha=c\cos^2\alpha-c\sin^2\alpha+a\sin\alpha=c(1-\sin^2\alpha)-c\sin^2\alpha+a\sin\alpha$$
$$b\cos\alpha=c+a\sin\alpha-2c \sin^2\alpha$$
Squaring we get $$b^2(1-\sin^2\alpha)=(c+a\sin\alpha-2c\sin^2\alpha)^2 $$
On simplification we shall get a Quartic Equation in $s=\sin\alpha$
But unfortunately, the squaring has introduced extraneous roots which need exclusion.
In general, lab bhattacharjee's method will work. However, if $a^2+b^2=c^2$, there is a simpler solution.
If $a^2+b^2=c^2$, and $\tan(\theta)=b/a$, then this simplifies to $$ \begin{align} 0 &=a\sin(\alpha)-b\cos(\alpha)+c\cos^2(\alpha)-c\sin^2(\alpha)\\ &=c\sin(\alpha-\theta)+c\cos(2\alpha)\\ &=c\cos(\pi/2-\alpha+\theta)+c\cos(2\alpha)\\ &=2c\sin\left(\pi/4-\theta/2-\alpha/2\right)\sin\left(\pi/4-\theta/2+3\alpha/2\right)\tag{1} \end{align} $$ where we've used $\cos(A)+\cos(B)=2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$.
$(1)$ means either $$ \pi/4-\theta/2-\alpha/2\equiv0\pmod{\pi}\tag{2a} $$ or $$ \pi/4-\theta/2+3\alpha/2\equiv0\pmod{\pi}\tag{2b} $$