-1

Can you please help me with this question:

Show that the gcd of $8n+7$ and $7n+6$ is $1$, where $n$ is a positive integer.

Thank you.

darkchampionz
  • 510
  • 4
  • 13
  • 2
    Whoa...slow down a bit! You've asked (posted) five questions in the last hour. Take your time to read the answers, think about, and digest solutions and hints. If you tackle some of your earlier questions, it may help answer other questions you have. – amWhy Mar 29 '13 at 03:16

3 Answers3

5

Simply: $(8n+7)\cdot 7 - (7n+6)\cdot 8 = 1$

More generally, if $ad-bc=\pm 1$ then $\gcd(an+b,cn+d)=1$ for all integers $n$.

This is not necessary however, since $\gcd(an+0,an+1)=1$.

Thomas Andrews
  • 177,126
2

Apply Euclid's algorithm:

$(8 n + 7) : (7 n + 6) = 1, \text{ remainder } n + 1$

$(7 n + 6) : (n + 1) = 7, \text{ remainder } -1$

So $\gcd(8 n + 7, 7 n + 6) = 1$ (it must divide $-1$ and be positive)

vonbrand
  • 27,812
1

Hint $\ $ If $\rm\:d\:$ divides both $\rm\:7+8n,\, 6+7n\:$ then eliminating $\rm\:n\:$ shows $\rm\:d\:$ divides an integer

$\begin{eqnarray} &&\rm \ &\rm\ j\,d& &\!=&\rm 7\,+\,\color{#0A0}8\,n\quad [1] \\ &&\rm &\rm k\,d& &\!=&\rm 6\,+\,\color{#C00}7\,n\quad [2]\\ \quad\color{#C00}7[1]\!-\!\color{#0A0}8[2]\:\Rightarrow\!\! &&\rm (7j\!-\!8k)\!\!\!\!\!&\rm\ \ \ d& &\!=&\rm 7(7)\!-\!8(6) = 1\:\Rightarrow\: d\mid 1 \end{eqnarray}$

Math Gems
  • 19,574