Can you please help me with this question:
Show that the gcd of $8n+7$ and $7n+6$ is $1$, where $n$ is a positive integer.
Thank you.
Can you please help me with this question:
Show that the gcd of $8n+7$ and $7n+6$ is $1$, where $n$ is a positive integer.
Thank you.
Simply: $(8n+7)\cdot 7 - (7n+6)\cdot 8 = 1$
More generally, if $ad-bc=\pm 1$ then $\gcd(an+b,cn+d)=1$ for all integers $n$.
This is not necessary however, since $\gcd(an+0,an+1)=1$.
Apply Euclid's algorithm:
$(8 n + 7) : (7 n + 6) = 1, \text{ remainder } n + 1$
$(7 n + 6) : (n + 1) = 7, \text{ remainder } -1$
So $\gcd(8 n + 7, 7 n + 6) = 1$ (it must divide $-1$ and be positive)
Hint $\ $ If $\rm\:d\:$ divides both $\rm\:7+8n,\, 6+7n\:$ then eliminating $\rm\:n\:$ shows $\rm\:d\:$ divides an integer
$\begin{eqnarray} &&\rm \ &\rm\ j\,d& &\!=&\rm 7\,+\,\color{#0A0}8\,n\quad [1] \\ &&\rm &\rm k\,d& &\!=&\rm 6\,+\,\color{#C00}7\,n\quad [2]\\ \quad\color{#C00}7[1]\!-\!\color{#0A0}8[2]\:\Rightarrow\!\! &&\rm (7j\!-\!8k)\!\!\!\!\!&\rm\ \ \ d& &\!=&\rm 7(7)\!-\!8(6) = 1\:\Rightarrow\: d\mid 1 \end{eqnarray}$