Hint $ $ Let $\,m = 2^kn,\ \color{#c00}{n\ \rm odd}.\,$ To solve $\,2^k n\mid (3x\!-\!1)(2y\!-\!1)^{\phantom{|^|}}\!\!$ it suffices to solve $\, 2^k\mid 3x\!-\!1\,$ & $\,n\mid 2y\!-\!1^{\phantom{|^|}}\!\!\!,\,$ i.e. $\,x\equiv 3^{-1}\!\pmod{\!2^k}\,$ & $\, y \equiv 2^{-1}\!\pmod{\!n}^{\phantom{|^|}}\!\!;\,$ both exist by $\,(3,2^k)\! =\! 1\! =\! \color{#c00}{(2,n)}^{\phantom{|^|}}\!\!$
Remark $ $ The factorization follows from: completing a square generalizes to completing a product, using the AC-method, viz.
$$\begin{eqnarray} &&axy + bx + cy\, =\, d,\ \ a\ne 0\\
\overset{\times\,a}\iff\, &&\!\! (ax+c)(ay+b)\, =\, ad+bc\end{eqnarray}\qquad\qquad$$