2

If $\triangle$ is the area of triangle with side lengths $a,b,c$, then show that $\triangle \le\dfrac{1}{4}\cdot\sqrt{(a+b+c)abc}$. Also show that equality occurs in the above inequality when $a=b=c$

My attempt is as follows:-

$$\triangle=\sqrt{s(s-a)(s-b)(s-c)}$$

$$\triangle=\dfrac{1}{4}\sqrt{(a+b+c)(b+c-a)(a+c-b)(a+b-c)}$$

$$b+c-a>0,a+c-b>0,a+b-c>0$$

So we can apply $A.M\ge G.M$

$$\dfrac{b+c-a+a+c-b+a+b-c}{3}\ge\left((b+c-a)(a+c-b)(a+b-c)\right)^\frac{1}{3}$$ $$\dfrac{a+b+c}{3}\ge\left((b+c-a)(a+c-b)(a+b-c)\right)^\frac{1}{3}\tag{1}$$

As $a>0,b>0,c>0$, we can also say

$$\dfrac{a+b+c}{3}\ge(abc)^\frac{1}{3}\tag{2}$$

But we can't say from this that $(abc)^\frac{1}{3}\ge\left((b+c-a)(a+c-b)(a+b-c)\right)^\frac{1}{3}$

So I tried $G.M\ge H.M$ for $a,b,c$

$$(abc)^\frac{1}{3}\ge\dfrac{3abc}{ab+bc+ca}$$ $$\dfrac{ab+bc+ca}{3}\ge(abc)^\frac{2}{3}\tag{3}$$

Seems like it didn't produce anything useful, so I tried $G.M\ge H.M$ for $b+c-a,a+c-b,a+b-c$

$$\left((b+c-a)(a+c-b)(a+b-c)\right)^\frac{1}{3}\ge\dfrac{3(b+c-a)(a+c-b)(a+b-c)}{((b+c-a)(a+c-b)+(a+c-b)(a+b-c)+(b+c-a)(a+b-c))}$$

$$\left((b+c-a)(a+c-b)(a+b-c)\right)^\frac{1}{3}\ge\dfrac{3(b+c-a)(a+c-b)(a+b-c)}{2ab+2bc+2ca-a^2-b^2-c^2}\tag{4}$$

But again it didn't produce anything useful, so I tried something else.

Applying $A.M\ge G.M$ for $a+b+c,a+b-c,b+c-a,a+c-b$

$$\dfrac{2(a+b+c)}{4}\ge\left((a+b+c)(b+c-a)(a+c-b)(a+b-c)\right)^\frac{1}{4}$$ $$\dfrac{a+b+c}{2}\ge\left((a+b+c)(b+c-a)(a+c-b)(a+b-c)\right)^\frac{1}{4}$$

Squaring both sides

$$\dfrac{(a+b+c)^2}{4}\ge\left((a+b+c)(b+c-a)(a+c-b)(a+b-c)\right)^\frac{1}{2}$$

By cachy's inequality:-

$$(1^2+1^2+1^2)(a^2+b^2+c^2)\ge(a+b+c)^2$$ $$3(a^2+b^2+c^2)\ge(a+b+c)^2$$ $$\dfrac{3(a^2+b^2+c^2)}{4}\ge\dfrac{(a+b+c)^2}{4}\tag{5}$$

Hence

$$\dfrac{3(a^2+b^2+c^2)}{4}\ge\left((a+b+c)(b+c-a)(a+c-b)(a+b-c)\right)^\frac{1}{2}\tag{6}$$

Dividing by $4$

$$\dfrac{3(a^2+b^2+c^2)}{16}\ge\triangle$$

So I tried all these approaches, but unfortunately didn't arrive at the required result. What can we do here? Please help me in this.

user3290550
  • 3,452

2 Answers2

0

$$\triangle=rs=\dfrac{abc}{4R}$$ where $2s=a+b+c$ and $R,r$ are the in-radius & circum-radius respectively

$$\sqrt{(a+b+c)abc}=\sqrt{\dfrac{2\triangle}r\cdot4\cdot\triangle\cdot R}=4\triangle\sqrt{\dfrac R{2r}}$$

Now use

True or False: The circumradius of a triangle is twice its inradius if and only if the triangle is equilateral. or

Why is the inradius of any triangle at most half its circumradius?

0

By your work we need to prove that $$\sum_{cyc}(2a^2b^2-a^4)\leq\sum_{cyc}a^2bc$$ or $$\sum_{cyc}(a^4-2a^2b^2+a^2bc)\geq0$$ or $$\sum_{cyc}(a^4-a^3b-a^3c+a^2bc)+\sum_{cyc}(a^3b+a^3c-2a^2b^2)\geq0$$ or $$\sum_{cyc}(a^4-a^3b-a^3c+a^2bc)+\sum_{cyc}ab(a-b)^2\geq0,$$ which is true by Schur.