Prove that $$\lim_{x→0} \frac{\sin^{-1}x-\tan^{-1}x}{x^3}=\frac{1}{2}$$
$$ \lim_{x→0} \frac{\sin^{-1}x-\tan^{-1}x}{x^3}=\lim_{x→0} \frac{\tan^{-1}\frac{x}{\sqrt{1-x^2}}-\tan^{-1}x}{x^3} \\ =\lim_{x→0} \frac{\tan^{-1}\bigg[\frac{\frac{x}{\sqrt{1-x^2}}-x}{1+\frac{x^2}{\sqrt{1-x^2}}}\bigg]}{x^3} =\lim_{x→0} \frac{\tan^{-1}\bigg[\frac{x(1-\sqrt{1-x^2})}{\sqrt{1-x^2}+x^2}\bigg]}{x^3}\\ \text{since, }\frac{x^2}{\sqrt{1-x^2}}>-1 $$
I think I am getting stuck here, do not really see how to proceed further with the steps.
Note: I don't want to use L'Hospital's rule as I 'd like to solve it without using the derivatives of $\sin^{-1}x$ and $\tan^{-1}x$.