Find $$\underset{x\rightarrow 0}\lim{\frac{1-\cos{x}\sqrt{\cos{2x}}}{x\sin{x}}}$$
My work.$$\underset{x\rightarrow 0}\lim\frac{1}{x\sin{x}}=\frac{\underset{x\rightarrow0}\lim{\;\frac{\sin{x}}{x}}}{\underset{x\rightarrow 0}\lim{\;x\sin{x}}}=\underset{x\rightarrow 0}\lim\frac{1}{x^2}$$ $$\underset{x\rightarrow 0}\lim{\frac{\cos{x}}{x\sin{x}}}=\underset{x\rightarrow 0}\lim{\frac{\sin{2x}}{2x\sin^2{x}}}=\underset{x\rightarrow 0}\lim{\frac{\sin{2x}}{2x}}\cdot\underset{x\rightarrow 0}\lim{\frac{1}{\sin^2{x}}}=\frac{1}{x^2}$$ $$\underset{x\rightarrow 0}\lim{\sqrt{\cos{2x}}}=\underset{x\rightarrow 0}\lim{\sqrt{1-2\sin^2{x}}}=\underset{x\rightarrow 0}\lim{\sqrt{1-2x^2}}$$
L' Hopital's rule:
$\underset{x\rightarrow 0}\lim{\frac{1-\cos{x}\sqrt{\cos{2x}}}{x\sin{x}}}=\underset{x\rightarrow 0}\lim{\frac{1-\sqrt{1-2x^2}} {x^2}}=\underset{x\rightarrow 0}\lim{\frac{-4x}{x^3\sqrt{1-2x^2}}}$
What should I do next?