I am interested in the definition of the cotangent space as the quotient space of ideals. The definition goes like this:
Let $\mathcal M$ be a smooth manifold. $C^\infty (\mathcal M)$ is the ring of smooth scalar fields on $\mathcal M$. Let $\mathcal I_p$ be the greatest subring of $C^\infty (\mathcal M)$ where $\phi (p)=0$ for all $\phi \in \mathcal I_p$. $\mathcal I_p$ is an ideal. The square of this ideal is $\mathcal I_p^2=\{\sum_{i=1}^n \phi_i \psi_i | n\in \Bbb N, \phi_i,\psi_i\in\mathcal I_p \}$. $\mathcal I_p$ and $\mathcal I_p^2$ are vector spaces. The quotient space of $\mathcal I_p$ and $\mathcal I_p^2$ is $\mathcal I_p/\mathcal I_p^2=\{\phi+\mathcal I_p^2|\phi\in\mathcal I_p\}$. This quotient space is either equal to the cotangent space on $\mathcal M$ at $p$ or isomorphic to it.
An element of $\mathcal I_p/\mathcal I_p^2$ could look like $\Phi=\{\phi + \psi \gamma, \phi + \eta \nu, \phi + \delta \upsilon + \alpha \beta,... \}$. How is $\Phi$ interpreted as a covector such as $\text d\phi_p$? Is $\Phi$ equal to $\text d \phi_p$?