Let $m,a_1,\dots,a_k\in\mathbb{N},$ show that: $$m\mid \gcd(a_1,\dots,a_k)\text{ implies } \gcd(a_1,\dots,a_k)= m\gcd(\frac{a_1}{m}, \dots,\frac{a_k}{m}), \gcd\left(\frac{a_1}{\gcd(a_1,\dots,a_k)},\dots,\frac{a_k}{\gcd(a_1,\dots,a_k)}\right)=1$$
My Attempts:
Since $m\mid \gcd(a_1,\dots,a_k)$ and $\gcd(a_1,\dots,a_k)\mid a_j$ where $j\in[1,k]\cap\mathbb{N}$ that $m\mid a_j$ we have: \begin{align} \frac{\gcd(a_1,\dots,a_k)}{m}\mid \frac{a_j}{m} &\equiv \frac{\gcd(a_1,\dots,a_k)}{m}\mid \frac{a_1}{m},\cdots,\frac{\gcd(a_1,\dots,a_k)}{m}\mid\frac{a_k}{m}\\ &\Rightarrow \frac{\gcd(a_1,\dots,a_k)}{m}\le \gcd(\frac{a_1}{m},\dots,\frac{a_k}{m})\\ &\Rightarrow \gcd(a_1,\dots,a_k)\le m\gcd(\frac{a_1}{m},\dots,\frac{a_k}{m})\tag{1} \end{align} Similarly we have: \begin{align} \gcd(\frac{a_1}{m},\dots,\frac{a_k}{m})\mid \frac{a_j}{m} &\equiv \gcd(\frac{a_1}{m},\dots,\frac{a_k}{m})\mid \frac{a_1}{m},\cdots,\gcd(\frac{a_1}{m},\dots,\frac{a_k}{m})\mid\frac{a_k}{m}\\ &\equiv m\gcd(\frac{a_1}{m},\dots,\frac{a_k}{m})\mid a_1,\cdots,m\gcd(\frac{a_1}{m},\dots,\frac{a_k}{m})\mid a_k\\ &\Rightarrow m\gcd(\frac{a_1}{m},\dots,\frac{a_k}{m})\le\gcd(a_1,\cdots,a_k)\\ &\Rightarrow m\gcd(\frac{a_1}{m},\dots,\frac{a_k}{m})\le\gcd(a_1,\dots,a_k)\tag{2} \end{align}
Put $(1)$ and $(2)$ together that:
$$m\gcd(\frac{a_1}{m},\dots,\frac{a_k}{m})\le\gcd(a_1,\dots,a_k)\le m\gcd(\frac{a_1}{m},\dots,\frac{a_k}{m})$$
That $\gcd(a_1,\dots,a_k)= m\gcd(\frac{a_1}{m},\dots,\frac{a_k}{m})$
Let $m=\gcd(a_1,\dots,a_k)$ we have:
$$\gcd(a_1,\dots,a_k)\gcd(\frac{a_1}{\gcd(a_1,\dots,a_k)},\dots,\frac{a_k}{\gcd(a_1,\dots,a_k)})=\gcd(a_1,\dots,a_k)$$
Divide both side by $\gcd(a_1,\dots,a_k)$, proved $\gcd\left(\frac{a_1}{\gcd(a_1,\dots,a_k)},\dots,\frac{a_k}{\gcd(a_1,\dots,a_k)}\right)=1\tag*{$\square$}$
Is my proof correct, and are there better approaches $?$
Thanks for your help.