Know that $\tan\left(\alpha-\frac{\pi}{4}\right)=\frac{1}{3}$ calculate $\sin\alpha$
My proof:
$\tan\left(\alpha-\frac{\pi}{4}\right)=\frac{1}{3}\\
\frac{\sin\left(\alpha-\frac{\pi}{4}\right)}{\cos\left(\alpha-\frac{\pi}{4}\right)}=\frac{1}{3}\\3\sin\left(\alpha-\frac{\pi}{4}\right)=\cos\left(\alpha-\frac{\pi}{4}\right)\\\sin^2\left(\alpha-\frac{\pi}{4}\right)+9\sin^2\left(\alpha-\frac{\pi}{4}\right)=1\\\sin\left(\alpha-\frac{\pi}{4}\right)=\pm\frac{1}{\sqrt{10}}\\
\sin\left(\alpha-\frac{\pi}{4}\right)=\sin\alpha\cos\frac{\pi}{4}-\sin\frac{\pi}{4}\cos\alpha=\frac{\sqrt{2}}{2}\sin\alpha-\frac{\sqrt2}{2}\cos\alpha=\frac{\sqrt2}{2}\left(\sin\alpha-\cos\alpha\right)=\pm\frac{1}{\sqrt{10}}\\\sin\alpha-\cos\alpha=\pm\frac{1}{\sqrt{5}}\\\sin\alpha=\pm\frac{1}{\sqrt{5}}+\cos\alpha$
I have no idea how to determine $\sin\alpha$