Question: Discuss the method of differentiation under the sign of integration. Hence evaluate following integrals: $$(i)\int_0^{\infty}\frac{\ln(1+a^2x^2)}{1+b^2x^2}dx\quad(ii)\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos\alpha\cos x)}{\cos x}dx\quad\cdots$$
First of all I am confused which parameter I take. Although I tried to take both parameter individually to get some intuition. \begin{align*} I(b) &= \int_0^{\infty}\frac{\ln(1+a^2x^2)}{1+b^2x^2}dx \\ I'(b)&=\frac{d}{db}\int_0^{\infty}\frac{\ln(1+a^2x^2)}{1+b^2x^2}dx\\ I'(b)&=\int_0^{\infty}\frac{\partial}{\partial b}\left(\frac{\ln(1+a^2x^2)}{1+b^2x^2}\right)dx\\ I'(b)&=\int_0^{\infty}-\frac{2x^2b\ln \left(1+a^2x^2\right)}{\left(1+x^2b^2\right)^2}dx \end{align*} Now I feel I choose wrong parameter. Then try again, \begin{align*} I(a) &= \int_0^{\infty}\frac{\ln(1+a^2x^2)}{1+b^2x^2}dx \\ I'(a)&=\frac{d}{da}\int_0^{\infty}\frac{\ln(1+a^2x^2)}{1+b^2x^2}dx\\ I'(a)&=\int_0^{\infty}\frac{\partial}{\partial a}\left(\frac{\ln(1+a^2x^2)}{1+b^2x^2}\right)dx\\ I'(a)&=\int_0^{\infty}\frac{2ax^2}{\left(1+x^2b^2\right)\left(1+a^2x^2\right)}dx \end{align*} Now I am frustrated and think I am missing something or didn't understand the concept.
questions:
$(1)$ Actually how to deal with them$?$
$(2)$ How to choose parameter wisely or assure that I am going right direction because after that partial derivatives those look more ugly to integrate/handle and backtracking isn't possible in Exam Hall$?$
Thanks in advance and thanks for your time .