I noticed a pattern in the powers of 9 modulo 100.
$9^1 \equiv 9 \pmod{100}$
$9^2 \equiv 81 \pmod{100}$
$9^3 \equiv 29 \pmod{100}$
$9^4 \equiv 61 \pmod{100}$
. . .
and conjectured the following:
If $n\geq 3$ is an odd integer where $9^n \equiv a \pmod{100}$ and $9^{n+1} \equiv b \pmod{100}$, then $a+b=90$.
How do I prove this?