First realization: the integrand is even, so we have $\displaystyle \int_0^{\infty}\frac{\sin(x)}{x(a^2+x^2)}\,dx=\frac{1}{2}\int_{-\infty}^{\infty}\frac{\sin(x)}{x(a^2+x^2)}\,dx$.
Next, since $\sin(x)=\Im(e^{imx})$, we state $\displaystyle \frac{1}{2}\int_{-\infty}^{\infty}\frac{\sin(x)}{x(a^2+x^2)}\,dx=\frac{1}{2}\int_{-\infty}^{\infty}\frac{e^{imx}}{x(a^2+x^2)}\,dx$.
We let $\displaystyle f(x)=\frac{e^{imx}}{x(a^2+x^2)}\,dx$ for convenience.
Let $[-R,R]=\gamma_1$ and $C_R=\gamma_2$ denote the upper half of the semicircle with radius $R$ centered at $z=0$, with $R>a$, taken counterclockwise.
By Jordan's Lemma, $\displaystyle \lim_{R \to \infty} \displaystyle \int_{C_R}f(z)\,dz=0$. (Since the bottom of the fraction is a polynomial with degree greater than $1$).
By the Residue Theorem, we obtain $\displaystyle \int_{\gamma_1\gamma_2}f(z)\,dz=2\pi i\,\text{Res}(f;ia)+2\pi i\,\text{Res}(f;-ia)-πi\,\text{Res}(f;0)$.
Then, we necessarily have $\displaystyle \int_{-\infty}^{\infty}f(z)\,dz=-\int_{\gamma_1\gamma_2}f(z)\,dz$.
Now, find that value, take the imaginary part of it, and divide by $2$.