If $f$ has a primitive $F$, by definition $f$ satisfies $F'=f$.
Now, by Darboux theorem $f$ satisfies the IVP.
A function with a jump discontinuity cannot satisfy the IVP:
First proof: analytical
let $\varepsilon=\frac{|f(x_0^-)-f(x_0^+)|}{3}$. By limit definition, there exists $\delta_1,\delta_2$ such that $x_0-\delta_1<x<x_0\rightarrow |f(x_0^-)-f(x)|<\varepsilon$ and $x_0<x<\delta_2+x_0\rightarrow |f(x_0^+)-f(x)|<\varepsilon$.
Setting $\delta=\min(\delta_1,\delta_2)$ we obtain that
$$f\big((x_0-\delta,x_0+\delta)\big)\subset \big(f(x_0^-)-\varepsilon,f(x_0^-)+\varepsilon\big)\cup \big(f(x_0^+)-\varepsilon,f(x_0^-)+\varepsilon\big)\cup {f(x_0)}$$
But this contradicts the IVP.
- Second proof: topological
We claim that a function $h:\mathbb{R}\to \mathbb{R}$ satisfies the IVP only if it maps closed intervals to intervals (in $\mathbb{R}^*$). The fact that $h$ cannot have a jump discontinuity then trivially follows.
To prove our claim, let $h([a,b])$ be a set that is not an interval (and thus it is not path connected, since the only path connected sets in $\mathbb{R}*$ are the intervals). Then there is a point $y\in[h(a),h(b)]$ that is not in $h([a,b])$, and this clearly contradicts the IVP.
- Note:On the existence of primitive
To answer your other question: the IVP is not enough to ensure the existence of a primitive. Actually, it is not enough to even ensure the non boundedness of the function (see, for example, the Base 13 function).
- Note: A proof of Darboux Theorem
The case in which $f=F'=k'$ is trivial. Let $F$ be a differentiable mom constant function defined on a closed interval $[a,b]$ and let $f=F'$, and let $y$ be a number in $(f(a),f(b))$ (if instead $f(b)<f(a)$ the proof is no different).
Now, let $h(x):=F(x)-xy$. This function is continuous and so, by Weierstrass theorem, it has a maximum and a minimum. They can't both be on the boundary of the interval, since this would imply the fact that $F$ is constant. Thus, at least one of those point is on the interior of the interval, and by Fermat theorem in this point (let us call it $\zeta$) we have $h'(\zeta)=0\rightarrow f(\zeta)-y=0\rightarrow f(\zeta)=y$.