I seem to have reached a contradiction. I am trying to prove that $\operatorname{Gal}(\mathbb{Q}(\sqrt[8]{2}, i)/\mathbb{Q}(\sqrt{-2})) \cong Q_8$.
I could not think of a clever way to do this, so I decided to just list all the automorphisms of $\mathbb{Q}(\sqrt[8]{2}, i)$ that fix $\mathbb{Q}$ and hand-pick the ones that fix $i\sqrt{2}$. By the Fundamental Theorem of Galois Theory, those automorphisms should be a subgroup of the ones that fix $\mathbb{Q}$. I proved earlier that those automorphisms are given by $\sigma: \sqrt[8]{2} \mapsto \zeta^n\sqrt[8]{2}, i \mapsto \pm i$, where $n \in [0, 7]$ and $\zeta = e^\frac{2\pi i}{8}$.
However, I am getting too many automorphisms. One automorphism that fixes $i\sqrt{2}$ is $\sigma: \sqrt[8]{2} \mapsto \zeta\sqrt[8]{2}, i \mapsto -i$. However, this means all powers of $\sigma$ fix $i\sqrt{2}$, and I know $Q_8$ does not contain a cyclic subgroup of order $8$. What am I doing wrong?
(Please do not give me the answer. I have classmates for that.)