Find the unit digit of a) $[(317^{24})^{18} + (713^{18})^{24} ]$
b) $[(243^{15})^{56} + (342^{56})^{15} ] $
I got my answers a) 2 and b) 7
is this correct?
Find the unit digit of a) $[(317^{24})^{18} + (713^{18})^{24} ]$
b) $[(243^{15})^{56} + (342^{56})^{15} ] $
I got my answers a) 2 and b) 7
is this correct?
For the first,
$317$ and $10$ are relatively prime. So, by Euler's Theorem,
$$317^{\phi(10)}\equiv 1 \mod 10$$ but
$10=2\times 5$ and
$\phi(10)=(2-1)(5-1)=4$
$\implies \;\;317^4=1 \mod 10$
$\implies \;\; 317^{24}=317^{4.6}=1 \mod 10$
by the same
$$713^{24.18}=1 \mod 10$$
the sum is $1+1=2 \mod 10$
therefore the unit digit is $2$.
Your answers are correct.
For the second,
$(243^{15})^{56}\equiv(3^4)^{14\times15}\equiv1\bmod 10$ because $243\equiv3\bmod10$ and $3^4=81\equiv1\bmod10$,
and $(342^{56})^{15}\equiv(2^4)^{14\times15}\equiv6\bmod 10$
because $342\equiv2\bmod10$, $2^4=16\equiv6\bmod10,$ and $6^n\equiv6\bmod 10$ for all $n\in \mathbb N$.