Find the coefficient of $\dfrac{1}{z}$ in $\dfrac{1}{z^4\cdot\sin z}$
My attempt is as follows:-
$$y=\dfrac{1}{z^4\cdot\sin z}$$ $$y=\dfrac{1}{z^4\cdot\left(z-\dfrac{z^3}{3!}+\dfrac{z^5}{5!}\cdots\cdots\infty\right)}$$
$$y=\dfrac{\cdot\left(1-\dfrac{z^2}{3!}+\dfrac{z^4}{5!}\cdots\cdots\infty\right)^{-1}}{z^5}$$
$$y=\dfrac{\cdot\left(1-\left(\dfrac{z^2}{3!}-\dfrac{z^4}{5!}\right)-\left(\dfrac{z^6}{7!}-\dfrac{z^8}{9!}\right)\cdots\cdots\infty\right)^{-1}}{z^5}$$
$$y=\dfrac{\cdot\left(1-\dfrac{z^2}{3!}\cdot\left(1-\dfrac{z^2}{5\cdot4}\right)-\dfrac{z^6}{7!}\left(1-\dfrac{z^2}{9\cdot8}\right)\cdots\cdots\infty\right)^{-1}}{z^5}$$
I was stuck here and didn't get any pattern further.Please help me in this.