Show that ${\{ x \in \mathbb R_{> 0}^2 \mid x_1x_2 \ge \alpha\}}$ is a convex set.
Using Jensen's inequality, let $x_1x_2 \ge \alpha$, and $y_1y_2 \ge \alpha$. For all $0 \le \theta \le 1$,
$$ \begin{align} (\theta x_1 + (1-\theta)y_1)(\theta x_2 + (1-\theta)y_2) & = \theta^2x_1x_2 + (1-\theta)^2y_1y_2 + \theta(1-\theta)(x_1y_2+y_1x_2)\\ & \ge \theta^2\alpha + (1-\theta)^2\alpha + \theta(1-\theta)(x_1y_2+y_1x_2)\\ & \ge \theta^2\alpha + (1-\theta)^2\alpha \\ & = (2\theta^2-2\theta+1)\alpha \end{align} $$
However, I'm not sure how to proceed. The fact that $(2\theta^2-2\theta+1)$ is only $\ge 1/2$ means I cannot say for sure that
$$(2\theta^2-2\theta+1)\alpha \ge \alpha$$
Note that I wish to prove this without using graphical method if possible.